Category Astronomy

Why does the European Space Agency want to give the Moon its own time?

The European Space Agency announced that space organisations around the world are considering how best to keep time on the moon. The need is for an internationally accepted lunar time zone.

How do you keep track of time on the moon?  What is the lunar reference point? The moon needs to be given its own time zone, the European Space Agency announced recently. As the race to the moon begins and more and more lunar missions are getting deployed, it is become, pertinent to come with a common refer time.

The European Space Agency announced that space organisations and the world are considering how best to keep time on the moon. The idea took out at a meeting in the Netherlands last year in such the participants agreed on the imminent need to set up    “ a common lunar reference time” Pietro Giordana, a navigation system engineer of the space agency said.

“A joint international effort is now being launched towards achieving this, “Giordano said in a statement.

As of now, a moon missions on the time of the country that is operating the spacecraft. The need is for an internationally accepted lunar time zone. This will be easier for all space-faring nations as mare countries and even private companies are aiming for the moon. The NASA is also getting art to send astronauts there.

 The question of time confounded NASA as it was designing and building the international Space Station, fast approaching the 25th anniversary of the launch of its first pierce. The space station doesn’t have its a time zone, But it runs on Coordinated Universal Time, or UTC which is meticulously based on atomic clocks. This ensures in splitting the time difference between NASA and the Canadian Space Agency, and the other partnering space programmes in Russia, Japan and Europe.

Debate is going on among the international team looking into lunar time on whether a single organisation should set and maintain time on the moon.

When it comes to keeping time on the moon, there are technical issues involved. One being that clocks run faster on the moon than on Earth, gaining about 56 microseconds each day, according to the space agency. Also, ticking occur differently on the lunar surface than in bar orbit.

The lunar time will have to be practical for astronauts there, noted the space agency’s Bernhard Hufenbach. NASA is gearing up for its first flight to the moon with astronauts in more than a half-century in 2024, with a lunar landing as early as 2025.

“This will be quite a challenge” with each day lasting as long as 29.5 Earth days, Hufenbach said in a statement. “But having established a working time system for the moon, we can go on to do the same for other planetary destination.” Mars standard Time, anyone?

Picture Credit : Google 

What was the first successful airship built by Ferdinand von Zeppelin in 1900?

On July 2, 1900, the first directed flight of the LZ-1, a zeppelin airship, took place in Germany. The man behind it was Ferdinand Graf von Zeppelin, who pioneered the cause of building rigid dirigible airships, so much so that his surname is still popularly used as a generic name.

Aeroplanes are now the norm for air travel but there was a brief period early in the aeronautical history when airships or dirigibles were believed capable of playing a crucial role in aviation development. Large, controllable balloons propelled by an engine, airships are one of two types of lighter-than-air aircraft (the other one being well, balloons of course!)

Now relegated to aerial observations, advertising and other areas where staying aloft is more important than movement, airships come in three main types: the non-rigid airships or blimps, the semi-rigid airships, and the rigid airships, often called zeppelins. The last category is more popular as zeppelins because it was a German man called Ferdinand Graf von Zeppelin who conceived and developed the first rigid dirigible.

Born in Konstanz, Germany on July 8, 1938, Zeppelin studied at the University of Tubingen before entering the Prussian Army in 1858. He travelled to the U.S. during the American Civil War and acted as a military observer for the Union Army.

An idea is born

It was during this time, in 1863, when Zeppelin had the first of several balloon ascensions at St. Paul, Minnesota. While he was quick to realise the weakness of free balloons, their overdependence on winds and their uncontrollability, it was an experience that stayed with him through a lifetime.

By the 1870s, the idea of building a steerable airship had taken shape in Zeppelin’s mind. So when he retired from the army with the rank of brigadier general, he decided to devote himself to building these airships.

Zeppelin toiled for a decade even though there were many naysayers. By 1900, he had built the first rigid-body airship consisting of a long, uniform cylinder with rounded ends. At 420 feet long and 38 feet in diameter, it had a hydrogen gas capacity of nearly 3,99,000 cubic feet.

Flies from a floating hangar

 From a floating hangar on Lake Constance, Germany, the initial flight of LZ-1, the first zeppelin, took place on July 2, 1900. Days away from turning 62, Zeppelin had finally made progress with an idea that had been with him for decades.

While the demonstration wasn’t entirely successful, the craft attained speeds of nearly 32 km/hour, enough to spark enthusiasm around zeppelins, get more donations, and have enough funding to keep the progress happening. Zeppelin tirelessly worked to make new and improved dirigibles and even created the first commercial passenger air service with them by 1910, but it wasn’t until World War I that support from the government finally came in.

With most aeroplanes still in the development phase, the Germans perceived the advantages of zeppelin-type rigid airships, which could not only attain higher altitudes than aeroplanes of the time, but also remain airborne for nearly 100 hours. More than 100 zeppelins were employed by the Germans for military operations during World War I.

Hindenburg disaster

Zeppelin died in 1917, without seeing the heights that his zeppelins reached, and the tragedy that followed. The LZ-127 ‘Graf Zeppelin’ was launched in 1927 and it was one of the largest ever built. Having a length more than that of two-and-a-half football fields, it made a number of trans-Atlantic flights.

The LZ-129 ‘Hindenburg’ came about in 1936 and was touted to become the most famous zeppelin ever. Instead, tragedy struck and the ‘Hindenburg’ exploded and burned on May 6, 1937 at its mooring mast in New Jersey. (In case you were wondering, the Hindenburg Research investment company, which has constantly been in the news this year following their reports about the Adani Group, was named after this zeppelin.)

The Hindenburg disaster spelt doom for zeppelins as the remaining ones were also taken off service and dismantled. While safety concerns diminished their popularity, they had helped establish the principles of lighter-than-air aircraft and had even been among the first to provide commercial air travel.

Picture Credit : Google 

Powerful launcher called Titan IIIC

On June 18, 1965, the expendable launch system Titan IIIC flew for the first time. Used by the U.S. Air Force and NASA from 1965 to 1982, Titan IIIC was a powerful launcher.

Do you know what an expendable launch system is? These are launch vehicles that can be launched only once. This means that the components are either destroyed during re-entry or are discarded in space after launch.

Also called expendable launch vehicles (ELVS), such systems usually contain several rocket stages. As the vehicle gains altitude and speed, these stages typically are sequentially discarded as and when their fuel is exhausted.

The Titan IIIC was one such ELV. Used majorly by the U.S. Air Force and also by NASA, the rocket consisted of modified liquid-fuel first and second stages with two lateral strap-on solid rockets to enhance boost at lift-off.

Began as an ICBM

The Titan family of launch vehicles started off as a large intercontinental ballistic missile (ICBM) as the U.S. Air Force sought an ICBM that would surpass Atlas in terms of delivery capacity and sophistication. Just like the Atlas and Thor, Titan too evolved into an important family of space launch vehicles.

The development contract for what would become the Titan ICBM was issued in October 1955. It was named Titan as the name referred to any of the children of Uranus (Heaven) and Gaea (Earth) and their descendants in Greek mythology. The first Titan was test-launched on February 6, 1959, but Titan I wasn’t modified for spaceflight.

Modified for Gemini Project

 That first happened with Titan Il, a more powerful version of Titan I. Tested successfully in March 1962, Titan II was declared operational in 1963. Initially modified as the Gemini-Titan II to be the launch vehicle of the crewed Gemini Project, it was then used to place satellites in orbit as well.

When there was a need for rockets that were capable of carrying heavier payloads than those handled by Atlas-Centaur, the Titan III family of launch vehicles were born. The Titan IIIA was a Titan II ICBM with an added third stage called transtage, which used twin Aerojet engines and burned Aerozine 50 and nitrogen tetroxide liquid fuel.

Two strap-on boosters

Titan IIIC was an upgrade on Titan IIIA. The most important modification was the addition of two huge strap-on solid rocket boosters that were over 25m tall and 3m wide. They were capable of remarkable thrust as they were powered by burning aluminum/ammonium perchlorate solid fuel.

On June 18, 1965, the Titan IIIC was launched for the first time from Cape Canaveral, Florida with a payload of nearly 10,000 kg. From 1965 to 1982, the Air Force employed different Titan IIICs over 30 times successfully, placing a variety of military communications and reconnaissance satellites in orbit.

In all, there were only five complete or partial launch failures with Titan IIICs. It was also used successfully by NASA for a number of launches, including in 1973 to launch an Applications Technology Satellite.

As long as it was in use, the Titan IIIC was the most powerful launcher that was used by the Air Force. It remained that way until 1982, when Titan 34D, which was based on Titan IIIC, was introduced. The last flight of a Titan IIIC took place on March 6, 1982.

Picture Credit : Google 

What about space dust as Earth’s sun shield?

The heat and energy from the sun is what drives life on Earth. That said, humanity is now collectively responsible for so much greenhouse gases that Earth's atmosphere now traps more and more of the sun's energy. This has led to a steady increase in the planet's temperature, and global warming and climate change are causes for concern.

One suggested strategy to reverse this trend is to try and intercept a small fraction of sunlight before it reaches Earth. Scientists, for decades, have considered the possibility of using screens, objects or dust particles to block 1-2% of the sun's radiation and thus mitigate the effects of global warming.

Dust to block sunlight

A study led by the University of Utah explored the idea of using dust to block a bit of sunlight. Different properties of dust particles, quantities of dust and the orbits that would work best for shading Earth were studied. The results were published on February 8, 2023 in the journal PLOS Climate.

Launching dust from Earth to a station at the Lagrange Point between Earth and the sun (L1) would prove to be most effective. The prohibitive costs and efforts involved here, however, might necessitate an alternative, which is to launch lunar dust from the moon.

These two scenarios were arrived at after studying a shield's overall effectiveness, which depends on its ability to sustain an orbit that casts a shadow on Earth. In computer simulations, a space platform was placed at the L1 Lagrange Point (point between Earth and the sun where gravitational forces are balanced) and test particles were shot along the L1 orbit.

While a precise launch was able to create an effective shield for a while, the dust would be blown off by solar winds, radiation, and gravity within the solar system. This would mean that such a system would require an endless supply of dust to blast from L1, making the cost and effort involved astronomical.

Moondust might work

 The second scenario of shooting moondust towards the sun might prove to be more realistic as the inherent properties of lunar dust allow it to work as a sun shield. After studying simulations of lunar dust scattered along different courses, an ideal trajectory that aimed towards L1 was realised.

The authors were clear in stating that their study only looks at the possible impact of such a strategy and do not evaluate the logical feasibility of these methods. If it works, this could be an option in the fight against climate change as it would allow us to buy more time.

Picture Credit : Google 

Unsung pioneers in the field of science

These are tales not just of perseverance and love for science, but also of discrimination and unfair treatment. Despite making groundbreaking discoveries, their names remain largely unknown, simply because they are women. Let's celebrate these women scientists and their contribution to the world….

ESTHER MIRIAM ZIMMER LEDERBERG (1922-2006)

Esther Miriam Zimmer Lederberg was an American microbiologist, who discovered bacterial virus Lambda phage and the bacterial fertility factor F (F plasmid). Like many woman scientists of her time, Esther Lederberg was not given credit for her scientific contribution because of her gender. While her husband, her mentor and another research partner won 1958 Nobel Prize in Physiology or Medicine for discovering how genetic material is transferred between bacteria, Esther wasn't even mentioned in the citation, even though her work significantly contributed to the discovery.

Esther Miriam Lederberg was born in Bronx, New York, into a humble family. When studying masters in genetics at Stanford University, Esther struggled to make ends meet. As recollected by Esther in her interviews, she had sometimes eaten frogs’ legs leftover from laboratory dissections.

Esther met her future husband Joshua Lederberg at Stanford. They moved to the University of Wisconsin, where they would begin years of collaboration. Throughout the 1950s, they published papers together and apart, as both made discoveries about bacteria and genetics of bacteria.

Esther Lederberg's contributions to the field of microbiology were enormous. In 1950, she discovered the lambda phage, a type of bacterial virus, which replicates inside the DNA of bacteria. She developed an important technique known as replica plating, still used in microbiology labs all over the world. Along with her husband and other team members, she discovered the bacterial fertility factor.

CECILIA PAYNE-GAPOSCHKIN (1900-1979)

Cecilia Payne-Gaposchkin was a British-born American astronomer who was the first to propose that stars are made of hydrogen and helium.

Cecilia Payne was born in 1900 in Buckinghamshire, England. In 1919, she got a scholarship to study at Newnham College, Cambridge University, where she initially studied botany, physics, and chemistry. Inspired by Arthur Eddington, an English astronomer, she dropped out to study astronomy.

Studying astronomy at Cambridge in the 1920s was a lonely prospect for a woman. Cecilia sat alone, as she was not allowed to occupy the same rows of seats as her male classmates. The ordeal did not end there. Because of her gender, Cecilia was not awarded a degree, despite fulfilling the requirements in 1923. (Cambridge did not grant degrees to women until 1948.)

Finding no future for a woman scientist in England, she headed to the United States, where she received a fellowship to study at Haward Observatory. In her PhD thesis, published as Stellar Atmospheres in 1925, Cecilia showed for the first time how to read the surface temperature of any star from its spectrum. She also proposed that stars are composed mostly of hydrogen and helium. In 1925, she became the first person to earn a PhD in astronomy. But she received the doctorate from Radcliffe College, since Harvard did not grant doctoral degrees to women then. She also became the first female professor in her faculty at Harvard in 1956.

Cecilia contributed widely to the physical understanding of the stars and was honoured with awards later in her lifetime.

CHIEN-SHIUNG WU (1912-1997)

Chien-Shiung Wu is a Chinese-American physicist who is known for the Wu Experiment that she carried out to disprove a quantum mechanics concept called the Law of Parity Conservation. But the Nobel Committee failed to recognise her contribution, when theoretical physicists Tsung-Dao Lee and Chen Ning Yang, who had worked on the project, were awarded the Prize in 1957.

Chien-Shiung Wu was born in a small town in Jiangsu province, China, in 1912. She studied physics at a university in Shanghai and went on to complete PhD from the University of California, Berkeley in 1940.

In 1944, during WWII, she joined the Manhattan Project at Columbia University, focussing on radiation detectors. After the war, Wu began investigating beta decay and made the first confirmation of Enrico Fermi's theory of beta decay. Her book "Beta Decay," published in 1965, is still a standard reference for nuclear physicists.

In 1956, theoretical physicists Tsung Dao Lee and Chen Ning Yang approached Wu to devise an experiment to disprove the Law of Parity Conservation, according to which two physical systems, such as two atoms, are mirror images that behave in identical ways. Using cobalt-60, a radioactive form of the cobalt metal, Wu's experiment successfully disproved the law.

In 1958, her research helped answer important biological questions about blood and sickle cell anaemia. She is fondly remembered as the "First Lady of Physics", the "Chinese Madame Curie" and the "Queen of Nuclear Research”.

LISE MEITNER (1878-1968)

Lise Meitner was an Austrian-Swedish physicist, who was part of a team that discovered nuclear fission. But she was overlooked for the Nobel Prize and instead her research partner Otto Hahn was awarded for the discovery.

Lise Meitner was born on November 7, 1878, in Vienna. Austria had restrictions on women education, but Meitner managed to receive private tutoring in physics. She went on to receive her doctorate at the University of Vienna. Meitner later worked with Otto Hahn for around 30 years, during which time they discovered several isotopes including protactinium-231, studied nuclear isomerism and beta decay. In the 1930s, the duo was joined by Fritz Strassmann, and the team investigated the products of neutron bombardment of uranium.

In 1938, as Germany annexed Austria, Meitner, a Jew, fled to Sweden. She suggested that Hahn and Strassmann perform further tests on a uranium product, which later turned out to be barium. Meitner and her nephew Otto Frisch explained the physical characteristics of this reaction and proposed the term 'fission' to refer to the process when an atom separates and creates energy. Meitner was offered a chance to work on the Manhattan Project to develop an atomic bomb. However, she turned down the offer.

JANAKI AMMAL (1897-1984)

Janaki Ammal was an Indian botanist, who has a flower- the pink-white Magnolia Kobus Janaki Ammal named after her.

She undertook an extraordinary journey from a small town in Kerala to the John Innes Horticultural Institute at London. She was born in Thalassery, Kerala, in 1897.

Her family encouraged her to engage in intellectual pursuit from a very young age. She graduated in Botany in Madras in 1921 and went to Michigan as the first Oriental Barbour Fellow where she obtained her DSc in 1931. She did face gender and caste discrimination in India, but found recognition for her work outside the country.

After a stint at the John Innes Horticultural Institute at London, she was invited to work at the Royal Horticulture Society at Wisley, close to the famous Kew Gardens. In 1945, she co-authored The Chromosome Atlas of Cultivated Plants with biologist CD Darlington. Her major contribution came about at the Sugarcane Breeding Station at Coimbatore, Tamil Nadu. Janaki's work helped in the discovery of hybrid varieties of high-yielding sugarcane. She also produced many hybrid eggplants (brinjal). She was awarded Padma Shri in 1977.

GERTY CORI (1896-1957)

Gerty Cori was an Austrian-American biochemist, known for her discovery of how the human body stores and utilises energy. In 1947, she became the first woman to be awarded the Nobel Prize in Physiology or Medicine and the third woman to win a Nobel.

Gerty Theresa Cori was born in Prague in 1896. She received the Doctorate in Medicine from the German University of Prague in 1920 and got married to Carl Cori the same year.

Immigrating to the United States in 1922, the husband-wife duo joined the staff of the Institute for the Study of Malignant Disease, Bualo. N.Y. Working together on glucose metabolism in 1929, they discovered the 'Cori Cycle' the pathway of conversion of glycogen (stored form of sugar) to glucose (usable form of sugar). In 1936, they discovered the enzyme Phosphorylase, which breaks down muscle glycogen, and identified glucose 1-phosphate (or Cori ester) as the first intermediate in the reaction.

The Coris were consistently interested in the mechanism of action of hormones and they carried out several studies on the pituitary gland. In 1947, Gerty Cori, Carl Cori and Argentine physiologist Bernardo Houssay received the Nobel Prize in 1947 for their discovery of the course of the catalytic conversion of glycogen.

Although the Coris were equals in the lab, they were not treated as equals. Gerty faced gender discrimination throughout her career. Few institutions hired Gerty despite her accomplishments, and those that did hire, did not give her equal status or pay.

Picture Credit : Google 

What is the History of science fiction?

Science fiction (sci-fi) has taken us on incredible journeys through time and space, allowing us to explore the depths of our imagination and the limits of the universe.

The term science fiction was first used by William Wilson in 1851 in a book of poetry titled ‘A Little Earnest Book Upon a Great Old subject’. However, the term's modern usage is credited to Hugo Gernsback, who founded the first sci-fi magazine, ‘Amazing Stories’ in 1926. The American editor used this term to describe stories that combined scientific speculation with adventure and futuristic concepts. The term gained widespread use in the 1930s and 1940s and has since become a popular genre of literature and entertainment.

Generally, the beginning of the literary genre of sci-fi is traced to 19th Century England and the Industrial Revolution, a time when rapid technological change inspired and led to the popularisation of stories and narratives that were ideally set in the future and explored themes such as time travel and interplanetary voyages. These stories dealt with the limits of human knowledge and the unintended consequences of our technological prowess. However, literary scholars claim that the earliest literary work that could fit into the genre of sci-fi dates back to the second Century AD.

A True Story: The earliest surviving work of sci-fi

Written by a Syrian satirist Lucian, ‘A True Story’, (also known as ‘True History’) is a two-book parodic adventure story and a travelogue about outer space exploration, extraterrestrial lifeforms, and interplanetary warfare. It is just extraordinary to know that the author produced a story that so accurately incorporated multiple hallmarks of what we generally associate with modern sci-fi, centuries before the invention of instruments such as the telescope.

Lucian was from Samosata (present-day Turkey), and his first language is believed to be Aramaic but he wrote in Greek. He might not be a household name today but literary scholars call him one of antiquity's most brilliant satirists and inventive wits. He is famous throughout European history for producing his absurd yet fantastical works and for his overt dispelling of the ridiculous and ill-logical social conventions and superstitions of his time. His works have been an inspiration for literary classics such as Jonathan Swift's ‘Gulliver's Travels’ and Thomas ‘More's Utopia’.

The basic classification of sci-fi

Sci-fi can be broadly classified into two categories: soft sci-fi and hard sci-fi.

Soft sci-fi, also known as social sci-fi, emphasises the social and humanistic aspects of science and technology, often exploring the effects of scientific advances on society and individuals. Examples of soft sci-fi include Margaret Atwood's The Handmaid's Tale which explores the social and political consequences of a future where women's rights have been severely restricted. Hard sci-fi, also known as scientific or realistic sci-fi, places a greater emphasis on scientific accuracy and realism, often using established scientific principles and theories to explore the possibilities of the future. An example of this is Andy Weir’s ‘The Martian’, which narrates the story of an astronaut stranded on Mars and his efforts to survive by using his scientific knowledge and problem-solving skills.

Picture Credit : Google