Category The Earth

Heatwaves in the ocean?

 

High temperatures and heatwaves across the globe saw records broken in July 2023 on land and in the oceans. The oceans serve as the Earth’s heat reservoir, absorbing substantial amounts of thermal energy as a result of their continuous interaction with the atmosphere. Under specific conditions. prolonged periods of unusually high temperatures in the oceans are called marine heatwaves. much like their atmospheric counterparts.

These higher temperatures could be driven by increased heat input from the atmosphere. decreased heat losses from the ocean or the transfer of warmer water masses through currents Over the past two decades these events have become more prevalent and widespread, having been observed in various areas of the global ocean, in both regional and large scales, at the surface of the ocean and at depth

In particular, recent data shows the occurrence of marine heatwaves surged by 34 percent between 1925 and 2016. While the exact mechanisms triggering marine heatwaves vary from region to region. there are two primary factors. In some instances, the atmospheric conditions themselves play a pivotal role. During such episodes. stagnant air masses and prolonged high temperatures in the atmosphere conspire to heat the ocean’s surface. setting the stage for a marine heatwave event. This pattern was notably evident during a 2012 North Atlantic event, which saw one of the highest sea surface temperatures ever recorded.

In other cases, the main driver is the movement of ocean currents, which transport relatively warm water masses to new areas. When these warm masses converge in specific regions, they cause a rapid and abrupt increase in the sea’s surface temperature. This was witnessed in the 2015 Tasman Sea (situated between Australia and New Zealand) event.

As the impacts of marine heatwaves reverberate across the globe, understanding the complex interplay between the oceans and the atmosphere is crucial for predicting the Occurrence of these extreme events. In the face of climate change, conserving and protecting our oceans becomes ever more critical. Therefore improving marine heatwave predictability is crucial to empower communities and ecosystems alike to adapt and build resilience. By better understanding the science behind marine heatwaves and taking collective action, people can work towards a more resilient and sustainable future for the oceans. (With inputs from agencies)

Picture Credit: Google

WHAT IS EARTH’S ATMOSPHERE MADE UP OF?

Covering the surface of Earth like a thin blanket is a layer of gases that forms the atmosphere. It is made up of 78 per cent nitrogen, 21 per cent oxygen and 0.04 per cent carbon dioxide. The minute, remaining percentage is made of some other gases, water vapour and dust. We barely notice this all-enveloping atmosphere, but without it the Earth would be lifeless as the Moon.

Earth’s atmosphere is composed of about 78% nitrogen, 21% oxygen, 0.9% argon, and 0.1% other gases. Trace amounts of carbon dioxide, methane, water vapor, and neon are some of the other gases that make up that remaining 0.1%. While the earth’s atmosphere is mainly gases, it also contains tiny particles such as dust and pollen. Some unnatural particles also collect in the atmosphere and cause air pollution. These include anything from aerosols to carbon emissions from vehicles and power plants.

As humans, we rely on the atmosphere around us for life. We breathe it, we live in it—without it, we wouldn’t survive. Not only does the atmosphere around us need to be made of a certain composition for us to thrive, but it also needs to be one in which plants and food can grow, and one that protects us from the elements. Having oxygen we can breathe is just as important as being protected from the harsh sun rays, or the open expanses of space, and Earth has just the right location and atmospheric chemical composition to sustain life for humans and all other life forms that call Earth home.

Credit: Worldatlas

Picture credit: Google