Category Technology

Are laser devices inspired by Einstein’s Theory of Stimulated Emission?

You might have come across laser pointers while attending a seminar or conference, or perhaps used it to play with your cat or dog. In the sixty years since physicists demonstrated the first laboratory prototype of a laser in 1960, it has been put to use in numerous ways from barcode readers to systems for hair removal.

The technology behind laser devices is based on Einstein’s Theory of Stimulated Emission. This theory came a year after the discovery of general relativity. Einstein imagined a bunch of atoms bathed in light. He had earlier discovered that atoms sitting in their lowest energy state can absorb photons and jump to a higher energy state. Similarly, higher energy atoms can emit photons and fall back to lower energies.

After sufficient time passes, the system attains equilibrium. Based on this assumption, he developed an equation that can be used to calculate what the radiation from such a system would look like. Unfortunately, Einstein’s calculations differed from the laboratory results. It was obvious that a key piece of the whole puzzle was missing.

Einstein resolved this by guessing that photons like to march in step. This would mean that the presence of a bunch of photons going in the same direction will increase the probability of a high-energy atom emitting another photon in that direction. Einstein labelled this process stimulated emission. He was able to rectify the disparity between his calculations and the observations by including this in his equations.

A laser is a device to harness this phenomenon. It excites a bunch of atoms with light or electrical energy. The photons released as a result are channelled precisely in one direction. Lasers are used in delicate surgery or industrial processes that require precision.

Picture Credit : Google

Does GPS primarily use the General Theory of Relativity?

Einstein’s General Theory of Relativity has predominantly found applications in astronomy through gravity waves, big bangs and black holes. One of its rather unexpected applications was in the multi-billion-dollar industry centred around the Global Positioning System (GPS).

All GPS navigators including Google Maps work by measuring the distance from one point on Earth to one of the satellites orbiting our planet. Though GPS was originally developed with military use in mind, it has since become an inherent part of everyday life.

GPS is based on a collection of 24 satellites, each carrying a precise atomic clock. A hand-held GPS receiver which detects radio emissions from any satellite overhead can find the latitude, longitude and altitude with accuracy up to 15 metres and local time to 50 billionths of a second. The clocks on satellites are ahead of those on Earth by 38,000 nanoseconds. The reason for this is explained by the General Theory of Relativity. Though it may appear as an inconsequential amount of time, if these nanoseconds are not taken into account, GPS systems would be highly inaccurate.

Picture Credit : Google

Why is it said that Albert Einstein had even contributed to the daily functioning of Wall Street?

Wall Street in New York is the home of the New York Stock Exchange. An army of mathematicians are employed there to analyze and predict the stock price variations. Their employers can potentially earn millions of dollars based on their predictions about which way the prices will jump.

Mathematicians however say that stock markets follow a random walk. This means that unless some spectacular event occurs, the prices have the same chances of decreasing and increasing at the end of any day. If patterns do exist, they will be elusive and difficult to find, which is why financial mathematicians are paid huge sums.

Some of the intricate mathematics used for stock market analyses can be traced back to Einstein. He developed the fluctuation-dissipation   theorem to explain the random movement of particles found in liquids or gases.

This movement called ‘Brownian motion’ was first observed by the Scottish biologist Robert Brown. Brownian motion is highly similar to the price fluctuations seen in stock markets. The similarity was observed in 1970 and since then it has been used on Wall Street. Einstein’s paper on Brownian motion is still used as the basis for certain stock market predictions.

Picture Credit : Google

What was the role Satyendra Nath Bose played in Einstein’s scientific life?

 

 

Einstein received a paper from Indian scientist Satyendra Nath Bose in 1924. The paper was on a new perspective: to think of light as a gas filled with indistinguishable particles. Einstein recognized the relevance of the paper. He translated it to German and submitted it on behalf of Bose to the famous journal Zeitschrift fur Physik. Bose went to Europe and worked with Einstein at the X-ray and crystallography laboratories there.

Einstein worked with Bose to extend his idea to atoms and they predicted a new state of matter which came to be called the Bose-Einstein Condensate. A Bose-Einstein Condensate is a dense collection of particles with integer spin known as Bosons.

Picture Credit : Google

Were Einstein’s researches after the General Theory of Relativity mostly based on universal field theories?

Einstein was primarily in pursuit of a universal field theory after the General Theory of Relativity. He engaged in a series of unsuccessful attempts to further generalize the theory of gravitation in order to unify and simplify the fundamental laws of physics, in particular, gravitation and electromagnetism.

This ‘theory of everything’ was supposed to refute the quantum theory. Though he published a paper in 1929 which supposedly had such a theory, Einstein himself had to acknowledge the errors in his argument.

Einstein remained in the cocoon of his research, largely ignoring other developments in physics and quantum theory. He however, did a few collaborations with the Indian scientist Satyendra Nath Bose, the Austrian Erwin Schrodinger and his Hungarian former student Leo Szilard.

In the 1930s he worked together with Russian physicist Boris Podolsky and the Israeli physicist Nathan Rosen. Nevertheless, his search for the ‘theory of everything’ and his distrust of the quantum theory consumed him in his later years.

Picture Credit : Google

Why was Einstein not a great supporter of the quantum theory?

Einstein had also made contributions to the development of the quantum theory. The concept of light quanta (photons) was used by him in 1905 to explain the Photoelectric Effect and to develop the quantum theory of specific heat.

Despite playing a main role in its development, Einstein regarded the quantum theory only as a temporarily useful structure.

His efforts were primarily in formulating the unified field theory which he believed would turn out to be the reason behind quantization of energy and charge. He felt that the quantum theory lacked the simplicity and beauty befitting a rational interpretation of the universe.

He engaged in a series of private debates with physicist Niels Bohr about the validity of the quantum theory later on. The 1920s witnessed his prolonged public debates with Niels Bohr and Werner Heisenberg over quantum mechanics. Einstein was rather lukewarm about the quantum theory even from a philosophical standpoint, saying in 1926 that he was convinced God does not throw dice. However, Bohr showed the ambiguities in Einstein’s reasoning.

Picture Credit : Google