Sheldon Glashow, Abdus Salam, and Steven Weinberg were awarded the 1979 Nobel Prize in Physics for their contributions to the unification of the weak and electromagnetic interaction between elementary particles.

The Royal Swedish Academy of Sciences has decided to award the 1979 Nobel Prize in physics to be shared equally between Professor Sheldon L. Glashow, Harvard University, USA, Professor Abdus Salam, International Centre for Theoretical Physics, Italy and Imperial College, Great Britain, and Professor Steven Weinberg, Harvard University, USA, for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including inter alla the prediction of the weak neutral current.

Physics, like other sciences, aspires to find common causes for apparently unrelated natural or experimental observations. A classical example is the force of gravitation introduced by Newton to explain such disparate phenomena as the apple falling to the ground and the moon moving around the earth.

Another example occurred in the 19th century when it was realized, mainly through the work of Oersted in Denmark and Faraday in England, that electricity and magnetism are closely related, and are really different aspects of the electromagnetic force or interaction between charges. The final synthesis was presented in the

1860’s by Maxwell in England. His work predicted the existence of electromagnetic waves and interpreted light as an electromagnetic wave phenomenon.

The discovery of the radioactivity of certain heavy elements towards the end of last century, and the ensuing development of the physics of the atomic nucleus, led to the introduction of two new forces or interactions: the strong and the weak nuclear forces. Unlike gravitation and electromagnetism these forces act only at very short distances, of the order of nuclear diameters or less. While the strong interaction keeps protons and neutrons together in the nucleus, the weak interaction causes the so-called radioactive beta-decay. The typical process is the decay of the neutron: the neutron, with charge zero, is transformed into a positively charged proton, with the emission of a negatively charged electron and a neutral, massless particle, the neutrino.

Although the weak interaction is much weaker than both the strong and the electromagnetic interactions, it is of great importance in many connections. The actual strength of the weak interaction is also of significance. The energy of the sun, all-important for life on earth, is produced when hydrogen fuses or burns into helium in a chain of nuclear reactions occurring in the interior of the sun. The first reaction in this chain, the transformation of hydrogen into heavy hydrogen (deuterium), is caused by the weak force. Without this force solar energy production would not be possible. Again, had the weak force been much stronger, the life span of the sun would have been too short for life to have had time to evolve on any planet. The weak interaction finds practical application in the radioactive elements used in medicine and technology, which are in general beta-radioactive, and in the beta-decay of a carbon isotope into nitrogen, which is the basis for the carbon-14 method for dating of organic archaeological remains.

Credit : The Nobel prize

Picture Credit : Google 

Leave a Reply

Your email address will not be published. Required fields are marked *