What was the Centaur project?

The Centaur upper stage rocket is a family of high-energy rockets that has played a pivotal role in advancing global communications and furthering our knowledge of space. November 27, 1963 is an important day in its history as it marked the first in-flight burn of a liquid hydrogen/ liquid oxygen engine.

When we speak about successful space missions, we generally talk about the results they delivered – the satellites that now orbit the Earth or the probes that gathered invaluable data from other planets. There’s a lot of work and plenty of factors, however, that goes into reaching that point. One of them is the upper stage rocket that boosts satellites into orbit and propels probes into space.

Among upper stage rockets, Centaur is a significant achievement as it has served as America’s workhorse in space and has been involved in many success stories. Used for over 100 unmanned launches, Centaur has expanded the frontiers of space and revolutionised communication.

Where it all began

Centaur’s beginnings predate even the existence of NASA as the U.S. Air Force studied a proposal from General Dynamics/ Astronautics Corp. to develop a new booster stage in 1957. With the space race between the U.S. and the Soviet Union heating up during this period, the idea was to give the country an edge, providing a means of orbiting heavy payloads in a very short time.

In 1958, the year NASA was established, Centaur became an official hardware programme with the Air Force as its assigned development authority. While the heaviest Soviet satellite orbiting the Earth at this time was the 1,360-kg Sputnik III, the U.S. had plans for boosting payloads to up to 3,850 kg. They planned to achieve this using Centaur, which was to have a new propulsion system using liquid hydrogen, mixed with liquid oxygen.

By July 1959, Centaur moved from the jurisdiction of the Department of Defense to NASA. Centaurs planned schedule of testing and operation, however, proved too optimistic, as there were a mountain of problems, failures, and delays to overcome.

Silverstein provides the silver lining

In 1962, American engineer Abe Silverstein put his hand up and convinced NASA that his Lewis Research Center could debug the Centaur and manage its problems. Once the entire responsibility was assigned to Lewis under Silverstein, the Lewis engineers got to work, perfecting the booster, while carrying out complex research and development to ensure Centaurs reliability. The fact that Lewis had been involved in pioneering work on high-energy liquid propellants for rockets helped, as this meant that most engineers working with Centaur were already aware of safely handling the liquid hydrogen/ liquid oxygen cryogenic fuels that it used.

The original Centaur rocket measured 30 feet long and 10 feet in diameter. As it used very cold propellants (liquid oxygen at-297 degrees Fahrenheit and liquid hydrogen at -420 degrees Fahrenheit), its tanks required special construction. A doubled walled bulkhead not only served as a heat barrier, but also separated the two compartments containing liquid hydrogen and liquid oxygen. Made of stainless steel less than 200ths of an inch thick, the tank was extremely thin and light-weight even once pressurised.

Following successful assembly, inspection, and shipping to Cape Canaveral, engineers and technicians perform testing procedures that can last weeks. A special tiger team uses a checklist to go through it all once again in the days leading up to any launch, before putting the rocket into start condition for the flight.

Go Centaur!

On November 27, 1963, one such launch took place. While it only carried a dummy payload that was put into orbit, it was a significant milestone. This was NASA’s first successful launch of the Atlas Centaur, proving the compatibility of the Atlas rocket with the upper stage Centaur. Additionally, it had the first in-flight burn of a liquid hydrogen/liquid oxygen engine, showing that these could be safely fired in space. In the decades that followed, there were many more successes for Centaur and a few mishaps too. Centaur was involved in sending the unmanned Surveyor spacecraft, which collected data on the moon’s surface and paved the way for the Apollo missions. Along with Atlas and Titan boosters, Centaur featured as the upper for probes and flybys to all other planets in our solar system.

It didn’t stop there as Centaur also launched orbiting observatories that help expand our knowledge about the universe, peering at space beyond our solar system. Centaur was also involved in launching various satellites into geosynchronous orbits that have changed the face of communication on our planet. While its name might not be often mentioned along with successful missions, Centaur continues to be a workhorse that serves its purpose.

Picture Credit : Google 

Leave a Reply

Your email address will not be published. Required fields are marked *