Category Astronomy

How did Japan’s Hayabusa spacecraft collect samples from an asteroid?

Scientists study meteorites for clues about the origin of Earth and the solar system because most meteorites are bits of asteroids that have fallen to Earth, and asteroids are believed to be leftover material from the time the solar system formed.

In 2005, for the first time ever, scientists scooped up rock samples directly from an asteroid using a spacecraft built especially for that purpose. The name of the spacecraft was Hayabusa. It was a robotic spacecraft developed by the Japan Space Exploration Agency (JAXA).

Hayabusa (Japanese for falcon’) was launched on May 9, 2003, and arrived in the vicinity of the asteroid Itokawa in mid-September 2005. In November 2005, it landed on the asteroid and collected samples in the form of tiny grains of rock which it brought back to Earth on June 13, 2010. Hayabusa was the first spacecraft to land and take off from an asteroid.

In December 2014, Japan launched another spacecraft Hayabusa 2 to study the near-Earth asteroid Ryugu and to bring back samples of rock not only from its surface but also from deeper below the surface. Hayabusa 2 reached Ryugu in June 2018.

In September 2018, the spacecraft landed two rovers on the asteroid. They were the first rovers ever to move on an asteroid. They moved with a hopping movement instead of rolling around on wheels. The rovers are designed to take pictures of the landscape and measure the temperatures on the asteroid.

Hayabusa 2 left the asteroid in November-December 2019 and delivered a small capsule that contained the rock and dust samples when it was 220,000 km from the Earth’s atmosphere. The capsule safely landed in the South Australian outback in December 2020.

Picture Credit : Google 

What are brown dwarfs?

Brown dwarfs are also known as failed stars. Why? Find out

Brown dwarfs are celestial objects that are too large to be called planets and too small to be called stars. They have. a mass less than 0.075 that of the sun, which is around 75 times the mass of Jupiter. Like stars, brown dwarfs are believed to form from a collapsing cloud of gas and dust. But as the cloud collapses, it does not form an object dense enough at its core to trigger a nuclear fusion. In the case of a star, hydrogen is converted into helium by nuclear fusion. This is what fuels a star and causes it to shine. Brown dwarfs, on the other hand, are not massive enough to ignite fusion. Hence, they are also called ‘failed stars’.

Dimmer and cooler than stars, brown dwarfs are elusive and hard to find. Infrared sky surveys and other techniques have, however, helped scientists detect hundreds of them.

They are believed to be as common as stars in the Universe. Some of them are companions to stars and many are isolated objects.

First discovered in 1995, brown dwarfs were hypothesized in 1963 by American astronomer Shiv Kumar. Despite their name, brown dwarfs are not brown. They appear from deep red to magenta, depending on their temperature.

Picture Credit : Google 

What are the secrets of Enceladus moon?

Discovered on August 28, 1789, Enceladus is a natural satellite of Saturn. This moon, which remained in relative obscurity for nearly 200 years, is now one of the most scientifically interesting destinations in our solar system.

The possibility of worlds other than our own Earth where life could exist has enthralled us for a long time. Often seen in the realm of science fiction, we might be inching ever so closer to it in reality as scientists have identified a handful of worlds that have some of the ingredients needed for life. One of them is Enceladus, an icy moon that is the brightest in the solar system.

Enceladus was discovered on August 28, 1789 by British astronomer William Herschel, more popular for discovering the planet Uranus. Little is known about how William went about it and made his discovery.

A dwarf named after a giant

What we do know, however, is that it was William’s son, John Herschel, who gave the moon its name Enceladus, after the giant Enceladus of Greek mythology. In his 1847 publication Results of Astronomical Observation made at the Cape of Good Hope, John suggested names for the first seven moons of Saturn that had been discovered, including Enceladus. He picked these particular names as Saturn, known in Greek mythology as Cronus, was the leader of the Titans.

For nearly two centuries, very little was known about Enceladus. That changed in the 1980s, when the U.S. spacecrafts Voyager 1 and Voyager 2 flew by the moon, capturing images. The pictures indicated that the icy surface of this small moon is very smooth in some places and bright white all over.

Enceladus, in fact, is the most reflective body in the solar system. Scientists, however, didn’t know why this was the case for a few more decades. Enceladus reflective capability implies that it reflects almost all the sunlight that strikes it, leading to extremely cold surface temperatures, of the order of -200 degree Celsius.

E ring and tiger stripes

Shortly after NASA’s Cassini spacecraft began studying Saturn’s system in 2004, Enceladus started revealing its secrets. By spending over a decade in the vicinity of the small moon, including flybys as close as 50 km, Cassini was able to unearth a wealth of information about Enceladus.

Cassini discovered that icy water particles and gas gush from the moon’s surface at about 400 metres per second. These continuous eruptions create a halo of fine dust around the moon, which supplies material for Saturn’s E ring. While a small fraction of this remains in the ring, the remaining falls like snow back onto the moon’s surface, thereby making it bright white. Scientists informally call the warm fractures on Enceladus’ crust from which the water jets come from as “tiger stripes”.

By measuring the moon’s slight wobble as it orbits Saturn and from gravity measurements based on the Doppler effect, scientists were able to determine that these jets were being supplied by a global ocean inside the moon. As this ocean supplies the jet, which in turn produces Saturn’s E ring, it follows that studying material from the E ring is akin to studying Enceladus’ ocean.

While the E ring is mostly made of ice droplets, there is also the presence of nanograins of silica that can be generated only where liquid water and rock interact at temperatures above 90 degrees Celsius. Along with other evidence that has been gathered, this suggests the existence of hydrothermal vents deep beneath this moon’s shell, similar to those on the Earth’s ocean floor.

Orbital resonance

Enceladus takes 33 hours for its trip around Saturn, which is nearly half of the time taken by the more distant moon Dione. Enceladus is thus trapped in an orbital resonance with Dione, whose gravity stretches Enceladus’ orbit into an elliptical shape. This means that Enceladus is sometimes closer to Saturn and at other times farther leading to tidal heating within the moon.

Running just over 500 km across, Enceladus is small enough to fit within the Indian State of Maharashtra, which runs around 700 km north-south and 800 km east-west. What it lacks in size it more than makes up for in stature, as Enceladus has a global ocean, unique chemistry, and internal heat. All this means that even though we still have plenty of data about the moon to pore over, explorers will eventually plan a return to Enceladus to learn more of its secrets.

Picture Credit : Google 

Who is the first Latin American to fly into space?

Arnaldo Tamayo Méndez, (born Jan. 29, 1942, Guantánamo, Cuba), Cuban pilot and cosmonaut, the first Latin American, the first person of African descent, and the first Cuban to fly in space. After the revolution of 1959, Tamayo Méndez joined the Cuban air force as a pilot.

Born in 1942, Mendez makes no mention of his father in his book Un cubano en el cosmos (A Cuban in the cosmos). As he lost his mother to tuberculosis while just eight months old, he grew up as a poor orphan in Guantanamo.

Limited schooling

He worked as a shoeshine boy, sold vegetables, delivered milk and worked as an apprentice carpenter by the time he reached his teenage years. Even though he had limited opportunities for schooling, he excelled at it in whatever little chance he got.

After joining the Association of Young Rebels during the Cuban Revolution, Mendez made his way to a technical institute. Here, he saw a chance to pursue his dream of flying and he readily enrolled himself into a course for aviation technicians, passing it with flying colours in 1961.

His success at this course gave him the confidence to become a pilot and make his dream a reality. He was then selected to travel to the Soviet Union to further his studies and learn to fly the Soviet MiG – 15 fighter jet. Mandez rose through the ranks in the next 15 years, becoming a captain in the Cuban Air Force by 1978.

Interkosmos programme

During the time Mendez was making his way up the Cuban Air Force, the Soviet Union had designed and formed the Interkosmos space programme (1967) and had the first flight of this programme in 1978. The objective of Interkosmos was to help the Soviet Union’s allies with crewed and unscrewed missions to space.

The search for the first Cuban Cosmonaut began in 1976 and a long list of 600 was shortlisted to two by 1978: Mendez and the other being Jose Lopez Falcon. It could have been purely based on merit, or it might have been an act of propaganda with political motivations, but what we do know is that Mendez was selected to fly aboard the Soyuz 38 mission.

On September 18, 1980, Mendez created history as he flew aboard Soyuz 38 along with Soviet cosmonaut Yuri Romanenko. On that same day, they docked at the Salyut 6 space station, and Mendez met Soviet cosmonauts Leonid Popov and Valery Ryumin as the hatch opened and was sealed.

Over the next seven days, Mendez completed 124 orbits around the Earth, conducting a number of experiments on science and health. There were a total of nine experiments, including those that studied stress, blood circulation, immunity, balance, and the growth of a single crystal of sucrose in weightlessness.

Instant fame

Mendez and Romanenko landed back on Earth on September 26 and the former was lauded by both the Cubans and the Soviets Mendez became an instant national hero and was honoured with the Hero of the Republic of Cuba medal, and received The Order of Lenin from the Soviets, among many other recognitions.

Mendez, who is now an 80-year-old, rose to the position of brigadier general following his space flight. He spent many years leading the education efforts of the Cuban army. Cuba’s Museum of the Revolution in Havana is home to the space suit that Mendez used for his historic Voyage.

The Interkosmos programme successfully flew many non-Soviets, including India’s Rakesh Sharma and astronauts from Britain, Japan, France, and Vietnam, among many other countries. Mendez’s flight not only made him the first Cuban cosmonaut, but also the first with African heritage to make it to space.

Picture Credit : Google 

What is Avatar?

AVATAR is an acronym for “Aerobic Vehicle for Hypersonic Aerospace Transportation”.

It is a single stage reusable space plane which is capable of horizontal take-off and landing. It is an unmanned spacecraft. DRDO is working on it. This can make satellite launches much cheaper as they can take off from conventional airfields. AVATAR’s liquid air cycle engine collects air on the way up, liquefies it, separates oxygen and stores it on board for flight beyond the atmosphere. AVATAR was first announced in May 1998 at the Aero India 98 exhibition held at Bangalore.

AVATAR was a follow up on the ‘Hyperplane’, a dream project of Dr. Kalam in the 1980s. The Hyperplane projects failed due to their immense weight. AVATAR weighs only 25 tonnes. And 60 per cent of it is liquid hydrogen fuel. It can launch satellites weighing one tonne!

The AVATAR design has been patented in India. Applications for registration of the design have been filed in patent offices in the US, Germany, Russia and China.

Picture Credit : Google

What is small satellite launch vehicle?

The Indian Space Research Organisation has been successful at developing space launch vehicles, building satellites, and launching them. But the space agency faced a glitch recently on the maiden journey of its Small Satellite Launch Vehicle (SSLV). Let’s see what an SSLV is.

As the name suggests, an SSLV is a small satellite launch vehicle capable of launching lightweight satellites. The ISRO’s SSLV is 34 metres tall, weighs 110 tonnes, and is equipped to launch satellites weighing between 10 kg and 500 kg to low earth orbit (LEO), that is up to 500 km from Earth. Such lightweight satellites are also called mini, micro, or nano satellites.

The SSLV has been developed to cater to the emerging market for the launch of small satellites into Earth’s low orbits by developing countries, students, and others. The SSLV is the third offering of the ISRO after the Polar Satellite Launch vehicle (PSV) and the Geosynchronous Satellite Launch Vehicle (GSLV). The key features of the SSLV are low cost, flexibility in accommodating madtiple small satellites, possibility of multiple drop-offs launch-on-demand feasibility, and minimal launch infrastructure requirement On its maiden demonstration flight on

August 7, the SSLV carried an earth observation satellite (LOS-02), and a cube satellite developed by students, named AzandiSAY. The rocket was supposed to place the payloads into the desired 356 km circular orbit. But the satellites were instead placed in an elliptical orbit. It was said the rocket deviated from its path and placed the satellites into 356/76 km low earth orbit due to malfunctioning of a sensor. “As the 76 km elliptical orbit was the lowermost point and closer to the surface of the Earth the satellites placed in such an orbit will not stay for long due to the atmosphere and will come down. The (two satellites) have already come down from that orbit and are no longer usable according to ISRO Chairman S. Somanath.

Picture Credit : Google