Category Scientist & Invensions

WHAT IS THE DIFFERENCE BETWEEN A VETERAN CAR AND A VINTAGE CAR?

A veteran car was made between 1896 and 1903, while a vintage car was built after 1904 and before 1930.

At what indeterminable point in time does an old car become a Classic? It may be easier to find the true location of Camelot than be able to find agreement between various groups of automotive enthusiasts as to what constitutes a Classic Car. It is very easy to define a Veteran Car, as they were, quite simply, built before the First World War. Similarly a Vintage Car was built before 1930, and Post Vintage referred to cars from the 30s until the end of WWII, however after this point it all becomes a bit hazy.

Some automotive organisations may refer to a car made in the 1940s as a Classic, while others my consider cars from the 1980s to Classics. Classic Car insurance generally kicks in for cars 20 years and older. However, there is also the UK Road Tax exemption on Classic Cars. When this was first introduced, a car needs to be more than 25 years old to be eligible. However now, due to a change in the rules, this only applies to cars built before 1973. So does that make everything built pre-1973 officially classic and everything built after not and never to be deemed so?

Few people would deny that the Ferrari Testarossa was a “Classic” from the moment she was launched in 1984, however hardly anyone would deem a VW Passat from the early 70s as a Classic. The Federation of British Historic Vehicle Clubs is campaigning for the reintroduction of the rolling scheme, but with a 30 year threshold. Yet, as shown above, defining a Classic by age alone oversimplifies it somewhat.

For a car to be considered and appreciated as a Classic there needs to be an aesthetic appeal. This could be for its design credentials or an element of timeless engineering beauty, combined with the ability to turn heads. When pulling up at a country hotel, do other guests stop to stare or ask questions? A Classic Car, like a classic beauty, needs to have that oh-so-subtle envy factor.

Being pragmatic, there is a value equation with Classic Cars which is associated with rarity, desirability and of course age. If the car has stopped going down in value and begun to rise again then that indicates that it has reached Classic status. A concourse car is more desirable than a restored version.

WHAT IS A CUSTOM CAR?

A custom car is one that has been altered from the manufacturer’s original specifications to suit the wishes of its owner. This may involve painting it with extraordinary designs, making the engine more powerful, or even “stretching” it by cutting the entire car in half and inserting additional body parts. Some cars have been made very long indeed by this method.

The one Custom car has 26 wheels and contains a swimming pool! There’s a helicopter parked on the car’s boot area. However, it’s not a fake and rather is the world’s longest car ever built. Called the “American Dream,” this massive limousine was built by California custom car guru Jay Ohrberg. It measures in at a stunning 100 feet long, which earned it the title of being the longest car, certified by Guinness World Records in the mid-’90s. Ohrberg chose a golden 1970s Cadillac Eldorado as the starting point for his mega project, which he began working on in the late 1980s. The 100-foot long stretched limo has a whopping 26 wheels and two separate driver’s cabins.

To make the American Dream even more special, Ohrberg decided to give it some of the most outrageous amenities, which include a helipad. In addition to that, the stretched limo has a Jacuzzi, diving board, king-sized water bed, as well as a small lace and candelabra-festooned living room. The American Dream was a show car which was trailered on flatbed trucks from location to location. It was leased to a company which used it as a promotional vehicle until the lease ran out. It was left abandoned in a New Jersey warehouse for many years before it resurfaced in 2012 at a salvage auction in a very bad state, which seemed like the end of the road for the American Dream. However, the New York’s Automotive Teaching Museum acquired it in 2014.

Picture Credit : Google

WHAT ARE THE MAIN SYSTEMS OF A CAR?

Like the human body, a car can be thought of as having systems with different functions, all working together to make the vehicle operate effectively.

 The modern vehicle is made up of a variety of parts and components all working together to achieve a final product: “The Car”. These parts and  components are assembled in groups to perform various tasks. These groups are referred to as systems. There are many systems that make up the modern vehicle, some working with others to perform a larger, sometimes more complex, task and others working individually in order to accomplish an individual job. The following is a list of the major systems that make up the modern vehicle.

  • The Engine – including lubrication and cooling.
  • The Fuel System – including evaporative emission.
  • The Ignition System
  • The Electrical System – including starting and charging.
  • The Exhaust System –including emission control.
  • The Drive Train – including the transmission.
  • The Suspension and Steering Systems
  • The Brake System
  • The Frame and Body

There are many other systems which contribute to the modern vehicle such as the Supplementary Restraint System (seat belts and air bags), Climate Control System (designed to provide passengers with a comfortable environment in which to ride) and everybody’s favourite the Sound System.

THE ENGINE

The engine is the vehicle’s main source of power. This is where chemical energy is converted into mechanical energy. The most popular type of engine is referred to as the Internal Combustion Engine. This engine burns an air/fuel mixture inside itself in order to drive a series of pistons and connecting rods that in turn rotate a crankshaft providing us with a continuous rotating motion with which to drive the vehicle and other components. The engine also incorporates others systems, including the lubrication system and the cooling system, all working efficiently together. The cooling system maintains the engine at an ideal operating temperature while the lubrication system ensures that all the moving parts are kept well-oiled in order to provide a long serviceable life.

Electrical system

As well as moving the wheels, the engine also powers an alternator, or dynamo, which generates electrical current. This current is stored in the battery. This supplies energy for the car’s lights, windscreen wipers, radio and such features as electric windows.

Suspension system

The suspension is a system of springs and shock absorbers that prevents every jolt caused by an uneven road surface being felt by the driver and passengers inside the car.

Transmission system

The transmission system consists of the crankshaft, gears and the differential. This is a system of gears on the axles that allows the wheels to travel at different speeds when going round corners, when the outer wheel travels further than the inner one.

Braking system

Each wheel has a brake unit, connected to the brake pedal by a tube full of brake fluid. Pushing the pedal forces the fluid down the tube, causing a brake shoe to press against a metal disk or drum on the inside of the wheel. Friction causes the wheels to slow and stop.

Picture Credit : Google

HOW DOES THE INTERNAL COMBUSTION ENGINE WORK?

Internal combustion engines are usually fuelled by petrol or diesel. This fuel is burnt (combusted) within metal cylinders. The burning fuel causes a piston to move up and down inside each cylinder, and it is this upward and downward movement that is translated into a turning movement by the crankshaft, causing the axles and wheels to turn and the car to move.

Combustion, also known as burning, is the basic chemical process of releasing energy from a fuel and air mixture.  In an internal combustion engine (ICE), the ignition and combustion of the fuel occurs within the engine itself. The engine then partially converts the energy from the combustion to work. The engine consists of a fixed cylinder and a moving piston. The expanding combustion gases push the piston, which in turn rotates the crankshaft. Ultimately, through a system of gears in the powertrain, this motion drives the vehicle’s wheels.

There are two kinds of internal combustion engines currently in production: the spark ignition gasoline engine and the compression ignition diesel engine. Most of these are four-stroke cycle engines, meaning four piston strokes are needed to complete a cycle. The cycle includes four distinct processes: intake, compression, combustion and power stroke, and exhaust.

Spark ignition gasoline and compression ignition diesel engines differ in how they supply and ignite the fuel.  In a spark ignition engine, the fuel is mixed with air and then inducted into the cylinder during the intake process. After the piston compresses the fuel-air mixture, the spark ignites it, causing combustion. The expansion of the combustion gases pushes the piston during the power stroke. In a diesel engine, only air is inducted into the engine and then compressed. Diesel engines then spray the fuel into the hot compressed air at a suitable, measured rate, causing it to ignite.

Picture Credit : Google

WHICH WAS THE FIRST CAR?

In 1769 the first steam-powered automobile capable of human transportation was built by Nicolas-Joseph Cugnot.

In 1808, Hyden Wischet designed the first car powered by the de Rivaz engine, an internal combustion engine that was fueled by hydrogen.

In 1870 Siegfried Marcus built his first combustion engine powered pushcrt, followed by four progressively more sophisticated combustion-engine cars over a 10-to-15-year span that influenced later cars. Marcus created the two-cycle combustion engine. The car’s second incarnation in 1880 introduced a four-cycle, gasoline-powered engine, an ingenious carburetor design and magneto ignition. He created an additional two models further refining his design with steering, a clutch and a brake.

The four-stroke petrol (Diesel) internal combustion engine that still constitutes the most prevalent form of modern automotive propulsion was patented by Nikolaus Otto. The similar four-stroke Diesel engine was invented by Rudolf Diesel. The hydrogen fuel cell, one of the technologies hailed as a replacement for gasoline as an energy source for cars, was discovered in principle by Christian Friedrich Schonbein in 1838. The battery electric car owes its beginnings to Anyos Jedlik, one of the inventors of the electric motor, and Gaston Plante, who invented the lead-acid battery in 1859.

In 1885, Karl Benz developed a petrol or gasoline-powered automobile. This is also considered to be the first “production” vehicle as Benz made several other identical copies. The automobile was powered by a single cylinder four-stroke engine.

In 1913, the Ford Model T, created by the Ford Motor Company five years prior, became the first automobile to be mass-produced on a moving assembly line. By 1927, Ford had produced over 15,000,000 Model T automobiles.

Picture Credit : Google

WHAT DID JOSEPH PRIESTLEY DISCOVER?

In 1774, the English chemist Joseph Priestley announced that he had discovered ar element within the air. Previously it had been thought that air itself was an element. However, Priestley’s achievement is an example of something that happens quite frequently in science. Although Priestley undoubtedly did discover the presence of oxygen, he was not the first to do so. A Swedish chemist called Carl Scheele had discovered it some months before, and it was not until some months later that a French chemist, Antoine Lavoisier, used Priestley’s work to explain what oxygen is and its importance in respiration and combustion. He also gave oxygen its name. The sharing of scientific knowledge moves our understanding of the world forward. No one person can put together all the pieces of the jigsaw puzzle.

Priestley entered the service of the Earl of Shelburne in 1773 and it was while he was in this service that he discovered oxygen. In a classic series of experiments he used his 12inch “burning lens” to heat up mercuric oxide and observed that a most remarkable gas was emitted. In his paper published in the Philosophical Transactions of the Royal Society in 1775 he refers to the gas as follows: “this air is of exalted nature…A candle burned in this air with an amazing strength of flame; and a bit of red hot wood crackled and burned with a prodigious rapidity, exhibiting an appearance something like that of iron glowing with a white heat, and throwing sparks in all directions. But to complete the proof of the superior quality of this air, I introduced a mouse into it; and in a quantity in which, had it been common air, it would have died in about a quarter of an hour; it lived at two different times, a whole hour, and was taken out quite vigorous.”

Although oxygen was his most important discovery, Priestley also described the isolation and identification of other gases such as ammonia, sulphur dioxide, nitrous oxide and nitrogen dioxide.

The Leeds Library holds important archival material on Priestley’s time there. It was while he was in Leeds that he began his most important scientific researches namely those connected with the nature and properties of gases. A bizarre consequence of this is that Priestley can claim to be the father of the soft drinks industry. He found a technique for dissolving carbon dioxide in water to produce a pleasant “fizzy” taste. Over a hundred years later Mr Bowler of Bath benefited from this when he formed his soft drinks industry.

Priestley should be included in any pantheon of scientists. The bicentenary of his death is an opportune time to reassess his life and work and several events are planned during the year. He possessed enormous scientific skills and originality of thought as well as having the courage to promote unpopular views. He was a man of rare insight and talent.

Picture Credit : Google