Category Scientist & Invensions

What did Lee De Forest discover?

Exactly 100 years ago, on March 12, 1923, American inventor Lee de Forest conducted a public demonstration of his Phonofilm at a press conference. Even though it wasn’t a great financial success, it heralded on era in movie production as it synced sound with the moving image.

When we think about successful inventors whose inventions have heralded a new era, we imagine that they would have enjoyed considerable personal financial success from it as well. This, however, isn’t always the case as some of them turn out to be bad at business. American inventor Lee de Forest was one of them. Even though he contributed immensely to the broadcasting industry and had plenty of scientific successes, he gained little from it all personally.

Unusual upbringing

Born in lowa, the U.S. in 1873, de Forest had an unusual upbringing for his time. Following his family’s move to Alabama, they were avoided by the white community. This was because his father had taken the presidency of the Talladega College for Negroes and was involved in efforts to educate blacks.

Despite his unusual circumstances, de Forest grew up as a happy child unaware of the prejudices he was being meted out making friends with the black children in the town. He was drawn towards machinery and by the time he turned 13, he was already making gadgets at will. This is why he took the path towards the sciences, rather than become a clergyman as planned by his father.

Invents first triode

Even though education wasn’t easy as he had to do odd jobs to meet expenses in addition to those covered by his scholarship and allowance from parents. de Forest completed his Ph.D. in physics in 1899. By 1906, he presented the audion – the first triode – and it went on to become an indispensable part of electronic circuits.

For several decailes, Inventors including American great Thomas Edison, had been trying to bring together the 3 phonograph (a device for recording and reproducing sound) and the moving picture. De Forest, working alongside fellow inventor Theodore Case, first became interested in the idea of sounds for films in 1913.

The patented system that he called Phonofilm began as a drawing in 1918. Over the next couple of years, he earned a number of patents pertaining to the process as he perfected it along the way. On March 12, 1923, he conducted a successful demonstration for the press and presented his Phonofilm.

Sound on film

The technological advance that de Forest brought about was to synchronise sound and motion. He did this by placing the sound recording as an optical soundtrack directly on the film. This meant that sound frequency and volume were represented in the form of analog blips of light.

In the weeks that followed, a number of short films premiered using the Phonofilm. As synchronising the sound of human voice with the lips that moved on screen was still rather difficult, the first sound films that the public viewed still haut dialogue titles, but were accompanied by music.

Below-par fidelity

While de Forest did equip nearly 30 theatres around the world with Phonofilm, he couldn’t get Hollywood interested in his invention. De Forest had a solution for the sound-sync issue with his Phonofilm, but the fidelity (how accurately a copy reproduces its source) on offer didn’t meet the expectations of the age.

 In the following years, the motion picture industry shifted to talking pictures and the sound-on-film process was similar in principle to that used in de Forest’s Phonofilm. De Forest, however, was a failed businessman who was bad at judging people. He was defrauded by his own partner, had to pay for lengthy legal battles for his patents, and even had to sell many of these patents, which were then employed profitability

For all his efforts, de Forest at least finished as an Oscar winner. In 1959, two years before his death in 1961, the Academy of Motion Picture Art and Sciences awarded de Forest an honorary Oscar for the “pioneer invention which brought sound to the motion picture”.

Picture Credit : Google 

Scientists have achieved the world’s first X-ray signal (or signature) of just one atom

From medical examinations and airport screenings to space missions, X-rays have been used everywhere since its discovery by German physicist Wilhelm Roentgen in 1895. A group of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, have now taken the world's first X-ray signal (or signature) of a single atom. The groundbreaking achievement could revolutionise the way in which scientists detect the materials.

One atom at a time

Before this, the smallest amount one can X-ray a sample is an attogram, which is about 10,000 atoms or more. The paper brought out by the scientists was published in the scientific journal Nature on May 31, 2023 and also made it to the cover of the print edition on June 1. The paper details how physicists and chemists used a purpose-built synchrotron X-ray instrument at the XTIP beamline of Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory.

Specialised detector

The team involved picked an iron atom and terbium atom for their demonstration. Both atoms were inserted in respective molecular hosts. Conventional detectors were supplemented with a specialised detector by the research team.

This specialised detector was made of a sharp metal tip. It is positioned at extreme proximity to the sample, enabling it to collect X-ray excited electrons. This technique is known as synchrotron X-ray scanning tunnelling microscopy or SX-STM.

Apart from achieving the X-ray signature of an atom, the team also succeeded in another key goal. This was to employ their technique to find out the environmental effect of a single rare-earth atom.

The scientists were able to detect the chemical states of the individual atoms inside respective molecular hosts and compare them. While the terbium atom, a rare-earth metal, remained rather isolated and didn't change its chemical state, the iron atom interacted with its surrounding strongly.

Many rare-earth materials are used in everyday devices like cell phones, televisions, and computers. This discovery allows scientists to not only identify the type of element, but also its chemical state. Knowing this enables them to work on these materials inside different hosts, paving the way for further advancement of technology.

This team aims to continue to use X-ray to detect properties of a single atom. They are also seeking ways to revolutionise their applications so that they can be put to use in critical materials research.

Picture Credit : Google 

Were the dinosaurs killed by more than one asteroid?

A newly discovered undersea crater off the coast of West Africa is leading scientists to wonder whether the dinosaurs were wiped out by more than one asteroid 66 million years ago.

What appears to be a second large asteroid impact crater has been discovered under the sea off the coast of West Africa, leading scientists to speculate that it may have been the smaller cousin of the one that struck the gulf of Mexico millions of years ago, wiping out the dinosaurs.

At 9km wide, the newly discovered crater- dubbed the Nadir Crater – is not as larger as the vast Chicxulub Crater in Mexico, which is estimated to be around 180km wide and 20km deep.

However, its size, age and placement on the other side of the Atlantic Ocean is leading geoscientists to wonder if the Earth was hit by more than one space rock that fateful day 66 million years ago, or if the Nadir Crater was caused by a chunk that broke off the Chicxulub asteroid.

Picture Credit : Google 

How ‘Eureka’ Moments in Science Happen?

When the Apple fell on Newton or when Archimedes took a bath, history as we know it changed. Those are the ‘Aha’ moments when scientific discoveries were made. A look at some of these breakthrough moments.

Archimedes’ principle – Archimedes

This was history’s first-ever ‘Eureka’ moment. The story of how the Greek mathematician Archimedes discovered the principle of buoyancy is a tale worth recounting. It was whilst taking a bath in a tub that the idea hit Archimedes. When Archimedes noticed the amount of water being displaced from the tub as soon as he entered it, he reasoned that the volume of the water displaced is equal to the volume of the body that was submerged. He is said to have run across the streets naked, shrieking “Eureka” at his discovery of the law of buoyancy. And that gave us the Archimedes’ principle.

Periodic Table – Dmitri Mendeleev

For Russian chemist Dmitri Mendeleev, it all happened in a dream. The Periodic Table of Elements as we know it was conceptualised in a dream. For months, he was trying to arrive at a logical way to organise the chemical elements. Although he knew the atomic weight was a crucial element, he couldn’t find a way to arrange it. One day, after racking his brain over the arrangement pattern, he fell asleep. And lo, the periodic table was born. The idea for the logical arrangement of the elements dawned on him during his dream. He later wrote “In a dream, I saw a table where all the elements fell into place as required.”

Law of Gravity – Isaac Newton

Every child grew up listening to the tale of how an apple’s fall changed science. It was when Isaac Newton noticed the apple fall that he first got the idea of gravity. He wondered what force attracted everything towards the Earth. The tree that inspired the idea of gravity in Newton still stands in the garden of Newton’s old home.

Penicillin – Dr. Alexander Fleming

The discovery of penicillin, the world’s first antibiotic, revolutionised the course of medicine. Dr. Alexander Fleming had just returned from a holiday and found mould growing on a petri dish of Staphylococcus bacteria. The green mould Penicillium notatum prevented the bacteria around it from growing. He isolated the mould, and understood it produced a substance that could kill the bacteria. He named the active agent penicillin and thus the world’s first antibiotic was discovered.

First synthetic dye – William Perkin

The fashion industry must thank William Perkin for his discovery of the first synthetic dye. He was trying to find a cure for malaria, but he accidentally invented the first synthetic purple dye. Perkin was assisting German chemist August Wilhelm von Hofmann in the process of using coal tar to produce quinine which was an expensive anti-malarial drug. As he mixed different coal tar components with potassium dichromate and sulphuric acid, Perkin produced a purple sludge. The rest is history.

DID YOU KNOW? Newton recounted the story that inspired his theory of gravitation to scholar William Stukeley. It appeared in Stukeley’s 1752 biography, “Memoirs of Sir Isaac Newton’s Life.” The UK’s Royal Society converted the fragile manuscript into an electronic book in 2010 and made it accessible online to the public.

Picture Credit : Google

What is the backstory behind the invention of the Xerox machine?


Young Chester Carlson worked as a patent analyser for a manufacturer of electrical components. This required laborious paperwork – he had to submit multiple copies when registering his company’s inventions and ideas at the patent office. Each duplicate had to be written by hand. Carlson suffered from arthritis. He knew there had to be another way of doing his job.

Working in his kitchen during his free time, Carlson discovered that some materials changed their electrical properties when exposed to light called photo-conductivity. After years of research, he came up with a patent in 1942 for a reproduction technique based on this, which he named ‘electric photography. Another 20 years went by before he found a company interested enough to manufacture the machine. He was turned away by the likes of IBM, GE and RCA, until in 1960, the Haloid company finally thought his idea marketable.

The company was later named Xerox. The process became so popular all over the world that the word ‘xeroxing’ (a trademark) is used instead of the correct term-‘photocopying’!

Picture Credit : Google 

Scientists grow plants in lunar soil for the first time

University of Florida scientists have grown Arabidopsis thaliana, belonging to the cauliflower family, in lunar soil known as regolith, collected from the Moon during the Apollo 11, 12 and 17 missions. NASA posted pictures of the experiment on Instagram with the caption: “To boldly go, we must boldly grow.”

Arabidopsis seeds were added to moistened lunar soil along with a daily mix of nutrients. However, the plants in the regolith didn’t grow as well as those grown in terrestrial soil. Some grew slowly and had stunted roots and leaves with a reddish colouring. They exhibited patterns seen in Arabidopsis under stress from growing in harsh environments, such as when there are too many heavy metals or salt in the soil. The plants grown in Apollo 12 and Apollo 17 regolith outperformed those grown in Apollo 11 soil, indicating that there could be pockets of richer regolith on the Moon.

The study demonstrates the possibilities of growing plants on the Moon. If plants could be a support system on the Moon or Mars, then future astronauts could grow their own food, thus River enabling them to stay for longer periods of time.

Picture Credit : Google